On critical behaviour in generalized Kadomtsev–Petviashvili equations

نویسندگان

  • B. Dubrovin
  • T. Grava
  • C. Klein
چکیده

An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the dispersive shock waves. © 2016 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation

In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.

متن کامل

Blow up and instability of solitary wave solutions to a generalized Kadomtsev– Petviashvili equation and two-dimensional Benjamin–Ono equations

Blow up and instability of solitary wave solutions to a generalized Kadomtsev– Petviashvili equation and two-dimensional Benjamin–Ono equations BY JIANQING CHEN*, BOLING GUO AND YONGQIAN HAN School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, People’s Republic of China Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088, Peopl...

متن کامل

Collapse of ultrashort spatiotemporal pulses described by the cubic generalized Kadomtsev-Petviashvili equation

Hervé Leblond, David Kremer, and Dumitru Mihalache Laboratoire de Photonique d’Angers, Université d’Angers, 2 Bd. Lavoisier, 49045 Angers Cedex 01, France Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 407 Atomistilor, Magurele-Bucharest, 077125, Romania Academy of Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094, Romania Abstract By using a reduc...

متن کامل

Asymptotic Behaviour of a Solution for Kadomtsev-petviashvili-2 Equation *

An asymptotic behaviour of solution of Kadomtsev-Petviashvili-2 equation is obtained as t → ∞ uniformly with respect to spatial variables.

متن کامل

Transverse Instability of Periodic Traveling Waves in the Generalized Kadomtsev-Petviashvili Equation

In this paper, we investigate the spectral instability of periodic traveling wave solutions of the generalized Korteweg-de Vries equation to long wavelength transverse perturbations in the generalized Kadomtsev-Petviashvili equation. By analyzing high and low frequency limits of the appropriate periodic Evans function, we derive an orientation index which yields sufficient conditions for such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015